Restoring Floodplain Processes on the Upper Willamette River

Troy Brandt - Fisheries Biologist Chris Smith, PE - Water Resource Engineer Pete Gruendike - Fisheries Biologist Russell Bartlett, PE - Water Resource Engineer

2016 Willamette Basin Fisheries Science Review February 8 – 9, 2016

<u>Acknowledgements</u>

• Funders

- Oregon Watershed Enhancement Board
- Meyer Memorial Trust
- Bonneville Power Administration
- Project Sponsors
 - McKenzie River Trust
 - Long Tom Watershed Council
 - Greenbelt Land Trust
- Property Owners
 - U.S. Fish & Wildlife Service
 - Oregon Parks and Recreation Department
 - Sponsors and private landowners

Floodplain Changes

Willamette River Limiting Factors

Impaired physical habitat

- Impaired access to off-channel habitat
- Reduced macrodetrital inputs channel disconnected from floodplain
- Reduced peak flows leading to decreased channel complexity and diversity of fish habitat

Spring Chinook

Winter Steelhead

Tie Goals to Limiting Factors

• Goals

- Increase floodplain habitat connectivity
- Increase quality of floodplain habitats
- Improve fish passage at crossings
- Floodplain reforestation

Off-channel Habitat Use

• Fish use off-channel habitats for:

- Summer refuge cold water
- Winter refuge velocity
- Predator avoidance
- Resource availability

Winter Connections

Remove blockages to improve access

USGS Harrisburg Gage (#14166000) Flow Duration

Number of Days Year Flow is Exceeded

Winter Connections

Remove blockages to improve access

USGS Harrisburg Gage (#14166000) Flow Duration

Number of Days Year Flow is Exceeded

Project Workflow

Project Identification

Inundation Mapping Property and Site Analysis Hydrologic Analysis

Project Design & Permitting

Site Engineering Design

Proposed Condition Modeling Regulatory Review and Permitting

Implementation & Monitoring

Construction

Monitoring

Adaptive Management

Project Area

Green Island
Harkens Lake
Sam Daws Landing
Snag Boat Bend

Green Island

 Historical Willamette -McKenzie confluence

 1,055 ac property purchased 2003

 56 ac CARP parcel purchased in 2010

 Formerly agriculture, gravel mining

Project Elements

- Coburg Aggregate Reclamation Project (CARP)
- Neck Channel

Low Water Crossing

<u>CARP</u>

3 moderate size ponds
Disturbed floodplain
Stranding and predation concerns

Existing Condition

Construction 2014

Neck Channel

Remove fill to increase connectivity
>60,000 cfs vs. 21,500 cfs
<1 d/yr vs. ~30 d/yr

Harkens Lake

Relic side channel
Conservation easement
Floodplain reforestation

Project Elements

3 crossings Road berm and swale

Road Berm and Swale

Remove berm and grade floodplain swale
>75,000 cfs vs. 30,000 cfs
<1 d/yr vs. ~21 d/yr
Improved flow-through conditions - 2 mi of channel

Road Berm

Sam Daws Landing

- Floodplain channel network
- 172 ac OPRD park
- Channel fills for historical agriculture
- 9.4 ac & 0.9 miles of side channel disconnected

Project Elements

- Inlet plug removal
- Low water crossing upgrades
- Rock dam removal
- Large wood structures

Side Channel Connection

Rock Dam Existing at 27,000 cfs Former Rock Dam As-built at 27,000 cfs

Snag Boat Bend

- Floodplain channel network
- 340 ac USFWS refuge
- Channel fills from historical agriculture
- 52 ac & 2.4 miles of side channel disconnected
 - >40,000 cfs vs.
 21,000 cfs
 <7 d/yr vs. ~40 d/yr

Project Elements

Crossing upgrade 9 berm removals

Berm Removal & Grading

Summary

 Goals address channel connectivity and expected juvenile fish use

- Projects include fill removals and crossing upgrades
- Need for biological monitoring

Communication, Brokers in Information

Oregon Chapter of the American Fisheries Society

52nd Annual Meeting | March 1–4, 2016 | Seaside, Oregon